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ON GENERATION OF AUTO-OSCILLATIONS DURING FIBERS FORMATION* 

A.L. IARIN 

The method of many scales is used to investigate the nonlinear interactions leading 
to appearance of auto-oscillations in the radius of the fiber during its forming. 
It is shown that the auto-oscillations are excited gradually and their amplitude 
and frequency is computed near the point of bifurcation. The behavior of the fiber 
is studied by numerical methods for the case when the draw-down ratio of spinning 
exceeds appreciably the critical value. 

Experimental data /1,2/ show that the forming process loses its stability when the draw- 
down ratio attains some critical value, whereupon periodic oscillations in the values of the 
radius and velocity of the fiber appear. This phenomenon is called "draw resonance". In the 
linear approximation the steady state draw is shown /2- 5/ to be unstable when the draw-down 
ratio exceeds the critical value of 20.22. Numerical computations /2/ have shown, in accord- 
ance with the experimental data, that the loss of stability is accompanied by the appearance 
of a cycle, i.e. of auto-oscillations. 

1. Asymptotic investigations. In the process of drawing, liquid thread (fiber) is 
fedtospinnerets, thins during the motion, and is wound at some distance L from the spinneret 
ontothetake-up bobbin. Under the model conditions the behavior of the liquid in the fiber 
correspondstothe rheological Newtonian relation. The motion in the liquid thread is best 
described in the quasi-one-dimensional approximation, neglecting the forces of inertia,weight, 
surface tension and friction against air (viscosity of the liquid is assumed sufficiently 
large to be the dominant factor). The equationsofcontinuity and momentum have the form /6- 
8/ 

(1.1) 

The following notation is used: t is time, z is the distance along the fiber counted 
from the spinneret orifice, a is the fiber radius and Iiis the longitudinal velooity along 
the fiber axis. In the general case the boundary conditions for the equations (1.1) are 

x = 0, a = 51 (t), V = 52 Q); I = L, V = 5, (t) 

where ci(t) are arbitrary functions of time. In other words, the radius and velocity of the 
fiber emerging from the spinneret and the rates of winding on the take-up bobbin can change 
with time according to an arbitrary law. Under the steady state conditions the above quant- 
ities become known constants & = uO, 5: = V” and j3 = i". The draw-down ratio is E = I”/vO 
and its critical value will be denoted by E,. Choosing LIV1,L,ao/~, VI, as the scales for 

t. x. a and I', we retain the dimensionless equations of the problem in the form (1.1) andtheir 
stationary solution /6/, denoted by an upper bar, is written in the dimensionless form as 

d = E'ld'-+,, r = EN-l) (1.2) 

Let us introduce into our discussion the following perturbations of solution (1.2): 

a = d (1 + &a), V = v (1 + EfJ), E (( 1 

The equations (1.1) now become 

(1.3) 

Now the search for the auto-oscillations appearing as a result of the loss of stability by 
(l-2), reduces to study of the problem of eigenvalues of the system (1.3) with boundary con- 
ditions 
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Z= 0,a=~=0;2=1,~=0 (1.4) 

In this case the perturbations are introduced between the spinneret and the bobbin. When 
t = 0, the distributions of the radius and velocity along the fiber differ, for the given 

value of the draw-down ratio E, from the stationary values (1.2). A similar situation may 
occur e.g. when therateof fiber take-up by the bobbin at t = 0 is increased. Solving the 
problem (1.3), (1.4) in the linear approximation, we arrive at the following characteristic 
equation for the spectrum of the eigenvalues h (the solution is sought in the form eL'F (s)) 
/3- 5/: 

When E < E,, all roots h of this equation have negative real parts. When E =E, z 20.22, 
equation (1.5) has two, single, purely imaginary roots h = fro = zfzf*O.693. Calculating with 
the help of (1.5) the quantity Re{h} near the points h =fiw, E = E, we find Re {h} = 
0.0053 (E - E,). Consequently, when E> E, the perturbations increase in the linear approx- 
imation without bounds and forming is unstable. We note that the characteristic equation (1.5) 
has, for 20.22 <E < 49.98, only two roots with Re {A} > 0 and further increase in the value 
of Eleads to the appearance of new pairs of roots h with positive real parts. 

To find the solutions of the problem (1.31, (1.4) bounded and not dying with time, we 
must take into account the nonlinear effects. In the nonlinear formulation the problem can 
be solved analytically near the critical value E, when (E-E,) is small. In the case when 

E9.E.V the spectrum of the linear problem (1.5) predicts a slow growth in the oscillation 
amplitude in accordance with the law exp (0 I(E - E,)tl} and the change in their phase by 

0 I(E -E,) tl . For the complex oscillation amplitude A-‘dAldt = O(E - E,) is correspondingly 
small. For this reason, introducing the asymptotic series 

E = E, (1 + EE, + ea E2 + . ..). Et = 0 (1) (1.6) 

we find that the solution in question varies not only in the "rapid" time scale t, but also 
in the scales of the set of "slow" times T = et, T1 = e*t, . . . The weak nonlinearity of the 
system (1.3) leads to separation of the processes taking place in different time scales. In 
particular, the growth and nonlinear restriction of the oscillation amplitudes take place 
within the "slow" time scales. The method of many scales /9/ represents an adequate technique 
for obtaining the auto-oscillatory solutions of the nonlinear problem. The times t, T, T1,... 
are regarded in this method as independent variables. The method reassembles the method of 
Krylov- Bogoliubov-Mitropol'skii /lo/ in, that it enables us to obtain the amplitude and 
phase equations for the nonlinear oscillations in the case of a weak nonlinearity. We write 
the required functions in the form of asymptotic series 

u = a, + ea,+ FEZ,+. . ., p = PO + e& i- e*& + . . . (1.7) 

The functions ai and br are of the order of unity, and 2, t, T, Tt serve as the arguments of 

the functions a, 0, al and fit. The stationary distribution of the velocity p and complex 

l/in E entering (1.3) can be written, with (1.6) taken into account, in the form 

-+s,+EsI+e~4+..., B(zi$=Y*(z)feV,(s) +eV2(5)+... 

s*=& El 
&=-_*’ 

1 

*' &=lrll In t 

El’ 
-(Eo - E&2)] 

(1.8) 

t, = A’$-‘), VI = ?‘,E1 (I - I), 
(1 - 4 

v,=[ 2 
(2 - 4 &3 + &, tz - I)] v* 

Passing in (1.3) to the "rapid" and "slow" time and taking into account (1.7) and (1.8), we 

obtain the equations of zero order in e. For a,and &, these equations reduce /3/ to 

and the functions aB,fiB as well as ai,5t(i>0) satisfy the boundary conditions (1.4). A 
solution of (1.9) corresponding to the sustained oscillation is found by separating the vari- 
ables, and has the form 



a0 = A (T, T,) eia*X (I) + A* (T, TI) e+‘X* (2) 
X (2) = Ci Ig (x)1 - Ci ($ + i {Si Ig (x)1 - Si (y)) 
g (5) = f&E!-“. y = g (0) 
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(1.10) 

Here, in accordance with (l-5), we have o = 0.693 . The asterisks denote the complex conjug- 
ate functions and the amplitude A is an arbitrary function of the "slow" times. The remain- 
ing solutions of (1.9) decay with time. The solution for &, corresponding to (1.10) has the 
form 

fiO = Aeim*Y (5) + A*ei@Y* (2) (1.11) 

Y (5) = - 2x + 2s* 
I 
eX- S,-aexp[ig(s)J + S,-lexp(iy) 

1 

Having obtained from (1.3) the equations of first order in ewe transform them withhelp 
of (1.10) and (1.11) to the form 

Z (5, T, T1) = [ - g + AhE (x - I)] g 

Zl(5) =g - k [v,’ (X’Y + + XY’) + 

P, (xu + + X’Y’ + + xy”)j 

z2(x,=*+( Vif, (5) + P, [x”Y* + x'Y*' + x*‘y + 

XL'Y' + + (x*'Y' + XCY” + x’y*’ + xY*“)]} 

fl (5) = XY’ + 2X’Y + S,(2X’Y’ + XYq 
fe (5) = x*r + XY,’ + 2 (x’Y* + XS’Y) + 

s, I2 (x*‘Y’ + x’Y*‘) + x*r + xY+“l 

fs (5) = x’Y* + x*‘y + f (x*Y’ + xY+‘) 

where the primes denote derivatives in z. We note that Z,(s) is a real function. Having 
obtained the solution of (1.12) and the corresponding fir, and having satisfied the boundary 
conditions, we obtain 

Ii1 w aA + li&E,A = 0 (1.13) 

kl=(S, - $)(e~ -Q) + S,X(l) - S,(el - E,e*) 

k2 = &(- ios, + 1) [Gel + (1 - S,) ed + 

-$ (- 2i@S, + 1) X (1) + ias, I&&E, + (1 - S,)ed + S, (el - e&E, 

e, = exp (iy/E,), e, = exp (iv) 

and here we find that 

al = B (T, Tl) ezaiX (x) + B* (T, T,) e-‘aLX+ (2) + 
AseamLFl (5) + A*se+l*~F,* (I) + AA*F* (5) 

B1 = B (T, TlpfY (2) + B* (T, TpatY* (2) + 
APeaiefYz(z) + A+*e+*alYP* (3) + AA*Y* (z) 

where B is an arbitrary function of the "slow" times. We also have 

P (5) = - S, (Ci [Zg(x)J - Ci (2~) + Si [2g (s)] - Si (2y)) 

bl = 
1 s -2 *z,(%)PfIP(i) - P (%)I d% + bid, s’ 21 (E) P;*‘x 

0 Ll 

1P(l)-P(%)1dE+2s,w)~z1(%)Pt’~d%+ 
0 

(1.14) 

(1.15) 
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2s* [ X’Y --2s*p’(ii-- 2>*1”,0,} 
0 

Yz(x)=--1-t" FF1 + 2S,F1’ + zs, (X,Y + $ XY’) - fix (y) dy - 2S*F1’ (0) 
0 

We note that a prime accompanying the integrand functions with subscript f denotes their deri- 
vatives in f, while the number b, as well as the functions F,(z) and Y,fs) are all real. 
Computing with help of (1.13) the coefficients k, and k, we find kl = -2.34 - ~.5.37, k, = 
0,155 - ieO.034 , consequently function A determined by (1.131 will be given by 

A (T, T,) = C (Ti) axp i(O.106 - i~O.538) Z’E,] (1.16) 

where (C(T,) is an arbitrary function. The expression (1.16) describes, of course, the linear 
behavior of the spectrum (1.5) during the passage through the critical value E = E,. Since 
we seek a bounded, auto-oscillating solution, it follows that El, with (1.16) taken Into ac- 
count, should be equal to zero. Thus the amplitude A of the auto-oscillating solution should 
depend only on T1. 

Separating from (1.3) equations of the order of Ed, we transform them with helpof 11.81, 
(l.lO), (1.11) and (1.14) and El = 0, to the form 

3 + I$++)$$ =cp,eiot+ mz*&@' i_ 91, 

rpx(s, T, TI)= 
[ 
- $$ -/- dio&(r- 1)- -$$I-$- -t-AsA*qpz (J) 

fr (2) 
‘p4.@)=25*+ q - +; IV*f* (s)] 

fil (2) = py; f xy,’ -j” F,Y’ + F,Y*’ + 2FB’Y + 2F1’Y* + 2X’Ya t 2x*9-, 

/a (x) = Zx,Y, f 2x*‘Ya’ + 2Y’F,’ 7 2F,‘Y*’ + XY; 4 x*y,” + F,Y” + F,Y”” 

fs (cc) = YF,’ + Y*F; + Y,X’ + Y,X*’ + ‘/a (XY; + X*Y2’ -i- F,Y’ -i- F,Y*‘) 

(1.17) 

The function $(.r, f, T, T,) includes the quadratic and cubic harmonics III t, , and a tern indepen- 
dent of t . Let us now seek a undamped solution of (1.17) and the corresponding distributron 

of P2 satlsfyrng the boundary conditions, As a result we find that aB/dT = 0 must hold and 
also 

dA 
I”“- -r ’ /itEJ?,A+A”A* x i_w(l)+[ia,cV(l)+W’(f)]5,+~i=O (1.lS) 

Introducing into our discussron the modulus and argument of the complex amplitude A = Wv 

and calculating the coefficient accompanying the nonlinear term in (l.l.S), we obtain 
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-~o.~O~E~,YB - 0.143$, dp 
dT1 

s= -0.538E2 - 1.72ip2 (1.19) 

We see that a normal bifurcation of the cycle formation takes place. The natural oscillations 

of the fiber radius ("stretch resonance") appear only in the case when E>E,(E,>O), i.e. 

they are generated gradually. The relative perturbation in the fiber radius is ,o = sa = 

2ep Re {Xe*(ot+v)} , therefore 
~0 lxcl = 2tq l-0.705 cos (0.6931 + v) + 1.39 sin (0.693t + v)] (1.20) 

When E is somewhat larger than E,, then according to (1.19) and (1.20) a natural oscillation 
will establish itself in the finite cross section of the fiber, with the following character- 

istics: 

(a0 Ix&w = 0.594vn=M, (aOIx&,,,=- M (1.21) 

00 = 0.693-0.09 (E - E,)I 

where o" is the angular frequency of the self-oscillations. 

2. Numerical computations. We have also carried out a numerical solution of the in- 
itial system of equations of continuity and momentum for the perturbations aO=ea and PO= $3 

(see (1.3) ). The derivatives in z were approximated in the equation of continuityonthelower 
time layer according to the corner scheme. This gave us the distribution of a0 in z on the 
upper layer, after which the application of the double sweep method with help of the momentum 
equation gave the distribution of 60 on the upper time layer. The distribution over .Z were 
approximated on the interval 0Q.2 <l over 100 points. The initial and boundary conditions 
were chosen in the form 

i = 0, a"= 26 Re(X;, fP= 26 Re (Y) 
3 = (I, a0 = fjo = 0: .T _ 1, p0 = 0 

Fig.1 Fig.2 

The computations have shown that in the 
finite difference approximation the critical 
value of the parameter E was slightlytoohigh, 
~25.5 instead of the analytic result of 20.12. 

This makes the comparison of the numerical re- 
sults with those of the asymptotic theory of 
Sect.1 near the critical value of E more dif- 
ficult; only a qualitative comparison can be 
made. Irrespective of the amplitude of the in- 
itial perturbation (the values 0.01<6<0.6 were 
used and we must have cP> -1) at EG25.5 the 
oscillations were observed to dying out, while 
for E> 25.5 sustained oscillations were estab- 
lished with the amplitude independent of 6. 
The natural oscillations were excited in amild 
manner, and this led to the normal bifurcation 
of the cylcle formation which agreed with the 
conclusions of Sect.1. 

Finally we pause to look at the results of numerical study of the fiber behavior at the 
values of E exceeding appreciably that of E,. The value of the draw-down ratio was increased 
up to the value E =500. Sustained oscillations (i.e. a solution with limit cycle) correspond 
to the whole range under investigation, and the increase in E is accompanied by an increase 
in the period and amplitude of the oscillations. The results for E=95;6= 0.6 are given in 
Fig.1 and Fig.2 shows the variation, with increasing (E-E,), of M=(a"),_,),, in curve I and 
fn= -(a"~x~~),,,II1 in curve 2, and the ratio r of the period of natural oscillations to length of 
time (E - i)/ln E, in which the liquid particle travels under the steady state conditions from 
the spinneret to the bobbin by curve 3. The asymptotic behavior of the curves in Fig.2 when 
(E -EE,)+O is described by the results (1.21). 

The author thanks V.S. Berman and V.M. Entov for 
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